
QGIS Plugin Development

Purpose
The purpose of this document is to provide resources to help fellow geogeeks members who
are interested in QGIS Plugin development with tips, tricks and troubleshooting to help them
get started.This a live document feel free to comment and contribute.

Contributors

Jack Green jackgreengis@gmail.com

Tom Lynch tom@trailmarker.io

QGIS Plugin Development
Purpose
Contributors

Choosing an IDE
IDLE
PyCharm
VS Code

Set up a Development Environment
Plugin Dev Location

Get Helper Plugins
Plugin Builder 3
Plugin Reloader
Debugvs

Basic Plugin Structures
Button with Dialog

Designing a Dialog using Qt Designer
Button with Dock Widget
Interactive Tool

Choosing an IDE
The first thing you will need to start building a plugin is an IDE (Integrated development
environment) which is just a fancy text editor to make it easier to write and maintain your
code. There are lot of different IDE’s available for python coding and it comes down to
personal preference of which one you choose. Below is a list of some of the more common
options and a bit of info on them:

- IDLE
- PyCharm
- VS Code

IDLE

<insert description>

PyCharm

<insert description>

VS Code

If you have come from a coding background then you would have more than likely used
Visual Studio Professional at some point. VS Code is a comfortable starting point for your
python development if that is the case.
It is free to download and contains a lot of good extensions like Python to provide
intellisense, auto-indentation and colour coding to assist in your development. When coupled
with additional QGIS Plugins active debugging of your plugins is available.

Set up a Development Environment
You will want to set yourself up with a working area to build and test your plugins. This can
be anywhere you like on your local hard drive. You may also want to consider using source
control (such as github) to version your code.

Plugin Dev Location
Once you have a location sorted you will need to tell QGIS where it is so your plugins can be
loaded directly from there for testing in QGIS.

1. Got to Settings > Options…

2. Under System scroll down to Environment and add a new custom variable
a. Apply: Append
b. Variable: QGIS_PLUGINPATH
c. Value: Parent directory for your plugins, for example if you are working on a

plugin in C:\dev\QGIS-Plugins\Cool-New-Plugin, the value should be
C:\dev\QGIS-Plugins

Get Helper Plugins
There are bunch of plugins that will help you on your plugin journey, here are a few you
should look at installing

Plugin Builder 3

This is a great plugin to get you started on creating your first plugin. It creates a new plugin
for you with all the different files (there are plenty) that you need in order to build a plugin. A
must have for a new developer.

Plugin Reloader

A really simple plugin that let you Reload / Refresh your plugin after you make some
changes without the need to close and reopen QGIS or adding the plugin to QGIS again.

Debugvs

Only relevant if you are using VS Code for your development, this plugin will allow you to
actively debug your plugin within QGIS.

To use debugvs you will also need to have a launch.json file to allow the code to be
debugged. This can be the same file for all of your plugins.

To set up debugvs, follow these steps:

1. In QGIS, install debugvs using the Plugins | Manage and Install Plugins feature
2. debugvs requires an additional Python package called ptvsd to be installed.

a. Open the OSGeo4W Shell as Administrator (on Windows, search your Start
Menu for this tool which is packaged with QGIS)

b. Use the pip package manager to install the required package via the
command

pip install ptvsd

as shown below (ignore the pip version warning—this appears on QGIS
3.28.34 LTR but will vary on different QGIS versions).

3. In QGIS, use the menu option Plugins | Enable Debug for Visual Studio | Enable
Debug for Visual Studio to ask debugvs to allow Visual Studio Code to attach to your
running QGIS (You will need to restart QGIS at least once during the overall process
of installing the plugin and its supporting package).

4. Create a folder called .vscode in your plugin directory (if one doesn't already exist)
5. Create a text file called launch.json in this folder with the following in the file

{

"version": "0.2.0",

"configurations": [

{

"name": "Python: QGIS Plugin",

"type": "python",

"request": "attach",

"port": 5678,

"host": "localhost"

}

]

}

You can then copy and paste this folder/file into all your plugins to enable them for
debugging.

Basic Plugin Structures

Button with Dialog
Click a button to launch a dialog window where you do some stuff. An example being the
Select Features by Expression… button which will open the dialog box to that lets you build
a query for selection

A basic plugin setup will look something like below for a new plugin called
MyNewDialogPlugin

Some of the files you are interested in:

Icon.png - this is the icon that will appear on the tool bar in QGIS

Metadata.txt - This holds information like the version number of your plugin, if you are going
to release the plugin to others you will need to change this with each release, if the plugin is
just for you then it doesn’t matter too much

MyNewDialogPlugin_dialog_base_ui - this is the dialog or form itself. The design of this form
is done within software called Qt Designer which is installed with QGIS (see Designing a
Dialog using Qt Designer)

MyNewDialogPlugin_dialog.py - this is where the python code that is wired to the Dialog
goes (e.g. when you click a button on the form this is where the code runs is located). This
goes for any of the items on the dialog.

MyNewDialogPlugin.py - this is where the code goes that runs when the button is pressed.
At its simplest it will simply be code to open the Dialog for the user.

Designing a Dialog using Qt Designer

Use this designer to create the dialog that you want to use. The key part with this designer is
the objectName that you give to each of the components. You will use this name to interact
with the dialog in your python code.

Button with Dock Widget
Use a dock widget rather than a form to do all of your work. An example would be the
Bookmark Manager for adding and removing spatial bookmarks.

Interactive Tool
A tool for interacting with the map canvas itself through clicking,, dragging, etc. by wiring
these events to your button. Example being the Pan tool which is wired to different things on
left click, right click, scroll wheel, etc.

